

Regio- and stereoselective alternating copolymerization of α-olefins with carbon monoxide using a cationic palladium-chiral diphosphine catalyst

Jian-Chao Yuan and Shi-Jie Lu*

State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China

Received 20 November 2000; accepted 12 April 2001

Abstract—Enantioselective alternating copolymerization of carbon monoxide with propylene, 1-heptene, 1-octene, and styrene was carried out using a palladium catalyst modified by 1,4-3,6-dianhydro-2,5-dideoxy-2,5-bis(diphenylphosphino)-L-iditol (DDPPI). The pure poly(1,4-ketone)s were obtained by dissolving the copolymers containing spiroketal and 1,4-ketone units in 1,1,1,3,3,3-hexafluoro-2-propanol and reprecipitating with methanol. Optical rotation, elemental analysis and ¹H, ¹³C NMR and IR spectra showed that our copolymers were optically active and isotactic with an alternating poly(1,4-ketone) structure. © 2001 Elsevier Science Ltd. All rights reserved.

Alternating copolymerization of α -olefins with carbon monoxide (CO) catalyzed by cationic palladium-ligand complexes is of great interest due to the potential use of the resulting polymer as a new material. ¹⁻⁶ Most of the successful enantioselective copolymerizations of α -olefins with CO on this subject deal with C_2 symmetrical bidentate ligands. ^{7,8} Recently, ligands of C_1 symmetry have been successfully applied to the enantioselective copolymerization of α -olefins with CO. ⁹⁻¹²

More recently, we have reported the enantioselective copolymerization of styrene with CO using the PdCl₂-CuCl₂-chiral phosphine catalytic system.¹³ Here, we report the first enantioselective alternating copolymerization of CO with propylene (P), 1-heptene (H), 1-octene (O) and styrene (ST) using the chiral palladium catalyst [(DDPPI)Pd(CH₃CN)₂](BF₄)₂ (DDPPI: 1,4:3,6-dianhydro-2,5-dideoxy-2,5- bis(diphenylphosphino)-Liditol) (Scheme 1).¹⁴

$$= \stackrel{R}{\longrightarrow} + CO \qquad \stackrel{Pd(II)-Cat}{\longrightarrow} \stackrel{R}{\longrightarrow} 1: R=CH_3$$

$$2: R=(CH_2)_4CH_3$$

$$3: R=(CH_2)_5CH_3$$

$$4: R=phenyl$$

$$2+ \qquad BF_4$$

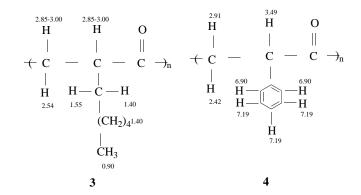
$$CH_3CN \qquad NCCH_3 \qquad PPh_2$$

$$Ph_2P \qquad H$$

Scheme 1.

Keywords: palladium catalyst; chiral ligand; enantioselective alternating copolymerization; isotactic copolymer; optical activity.

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: \$0040-4039(01)00633-5


^{*} Corresponding author. Fax: (+86)-931-8277088; e-mail: lushijie@ns.lzb.ac.cn

The nature of the chiral phosphine ligands plays an important role in enantioselective copolymerization reactions of olefins with carbon monoxide. The results in Table 1 show that DDPPI is an effective chiral ligand for the enantioselective copolymerization of carbon monoxide with propylene, 1-heptene, 1-octene, and styrene. The molecular structure of DDPPI¹⁴ (Scheme 1) shows that this diphosphine is a bicyclic compound with high rigidity and that it contains four chiral carbon atoms whose configurations are all *S*. High optical activity and good yields were obtained under our reaction conditions.

The P-CO, H-CO, O-CO, and ST-CO copolymers synthesized appear to be isotactic since optically active materials were obtained when enantiomerically pure DDPPI was used. Note that syndiotactic α -olefin-CO copolymers should only exhibit vanishingly small optical activity.

The pure poly(1,4-ketones) can be obtained by treating the α-olefin-CO containing spiroketal units with acidic solvents such as 1,1,1,3,3,3-hexafluoro-2-propanol. The pure copolymers showed a single carbonyl absortion at 210-220 ppm in their ¹³C NMR spectra due to the exclusive head-to-tail structure. 15 Single dominant resonances for the CH₂ (40–45 ppm) and CH (42–52 ppm) groups in the polymer backbone support the presence of high stereoregularity in the polymers (Fig. 1). Similarly, the high regio- and stereoregularity of the copolymers is easily recognized in their ¹H NMR spectra (Fig. 2). The coupling constants for the diastereotopic methvlene protons (signals at 2.40-2.80 ppm and 2.85-3.20 ppm) can be evaluated easily in spite of some overlapping of the signals at lower field with that of the methine proton.^{7,16} The values of these constants (15– 17 and 3.1 Hz; 15-17 and 9.2 Hz) suggest a conformational homogeneity for the copolymers in solution, in keeping with the high optical rotation.^{7,16} It is very clear from the ¹H NMR and ¹³C NMR spectra that the degrees^{7,8,16} of regioregularity and stereoregularity in the optically active, isotactic P-CO, H-CO, O-CO, and ST-CO copolymers were all >90%.

The high tacticity of the polymers was also supported by their ¹H NMR spectra. The solution of the propylene-CO copolymer in CDCl₃/(CF₃)₂CHOH showed that the ¹H NMR (Fig. 2A and structure 1) resonance at 1.12 ppm (d, J=6.7 Hz, 3H, CH₃) was clearly due to the methyl group in the repeating unit, -CH(CH₃)CH₂CO-. The coupling constants indicated that the H atom absorbing at 2.78 ppm (d, J=15.7 Hz, 1H, CHH) was not coupled with the H atoms of the methyl group, and therefore, was one of the hydrogen atoms of the CH₂ group. The H atom of the CH group resonating at 3.05-3.20 (m, 2H, CHH and CH) ppm overlapped with the absorption of the second H atom of the CH₂ group (the two H atoms of the CH₂ group are diastereotopic and therefore nonequivalent). The ¹³C NMR (CDCl₃/(CF₃)₂CHOH) spectrum (Fig. 1A) exhibited resonances at 215.2, 45.4, 40.5, and 16.2 ppm due to the C=O, CH₂, CH, and CH₃ groups of the -CH(CH₃)CH₂CO- units in the copolymer, respectively. These NMR parameters are in accord with those reported by Consiglio and co-workers.¹⁶

The ¹H NMR (CDCl₃/(CF₃)₂CHOH) (Fig. 2B and structure 2) spectrum of the 1-heptene-CO copolymer shows resonances at 2.80-3.10 (m, 2H, backbone CHH and CH), 2.65 (d, J = 16.2 Hz, 1H, backbone CHH), 1.65 (m, 1H, side-chain $CH\underline{H}C_4H_9$), 1.35 (m, 7H, sidechain $CH\underline{H}(C\underline{H}_2)_3CH_3$, 0.95 (t, br, 3H, CH_3) ppm, respectively, due to the two overlapping protons from both the backbone CH2 and CH groups, the other diastereotopic proton of the backbone CH₂, the one diastereotopic proton of the side-chain CH₂ adjacent to the methine group, the rest of the methylene protons in the side-chain and the CH₃ protons in the -CH(CH₂)₄CH₃)CH₂CO- repeatING units of the polymer. The ¹³C NMR (CDCl₃/(CF₃)₂CHOH) spectrum of 1-heptene-CO copolymer (Fig. 1B) exhibited resonances at 214.1, 45.0, 42.4, 35.5, 30.7, 23.0, 19.2, and 13.5 ppm due to, respectively, the C=O, CH, and CH₂ groups in the backbone, the four methylene groups in the sidechain, and the CH₃ groups.

Similarly, the ¹H NMR (CDCl₃/(CF₃)₂CHOH) (Fig. 2C and structure 3) spectrum of the 1-octene-CO copolymer exhibits absorbances at 2.85–3.00 (m, 2H, backbone CH \underline{H} and C \underline{H}) and 2.54 (d, J=16.4 Hz, 1H, backbone CH \underline{H}) ppm due to the two overlapping protons from both the backbone CH₂ and CH groups, the other diastereotopic proton of the backbone CH₂. Resonances at 1.55 (m, br, 1H, side-chain CH \underline{H} C₃H₁₁), 1.40 (m, 9H, side-chain CH \underline{H} (C \underline{H} ₂)₄CH₃), 0.90 (t, br,

Table 1. Enantioselective copolymerization of α-olefins with CO catalyzed by [(DDPPI)Pd(CH₃CN)₂](BF₄)₂^a

Copolymer	Propylene-CO	1-Heptene-CO	1-Octene-CO	Styrene-CO
M_n^b	1.43×10^4	4.02×10^3	7.31×10^{3}	6.23×10^{3}
M _w ^b	3.89×10^{4}	6.25×10^{3}	1.73×10^4	1.07×10^{3}
$M_{\rm w}/M_{\rm n}^{\rm b}$	2.72	1.55	2.37	1.72
Productivity (g g ⁻¹¹ Pd h ⁻¹¹)	24.53	13.76	16.12	20.05
$[\alpha]_{589}^{20} (5 \text{ mg/mL})^{c}$	52°	63°	61°	359°
Tg (°) ^d	35	11	3	127
Tm (°) ^d	203	194	204	305
Anal. calcd (found)	C, 68.6 (68.9)H,8.6(8.4)	C, 76.1 (76.3)H,11.2(11.4)	C, 77.1 (77.5)H,11.4(11.3)	C, 81.8 (82.1)H,(6.1(6.5)
$IR(C=O)(cm^{-1})^e$	1703	1708	1706	1714

^a Reaction conditions: α-olefins (10 ml); [Pd(DDPPI)(CH₃CN)₂][BF₄]₂ (0.05 mmol); 2,6-dimethylbenzoquinone (0.08 mmol); solvent [3:1 (v/v) methylethylketone /CH₃OH] (6 mL); CO 9 MPa; temperature 45°C; time: 32 h (propylene-CO), 48 h (1-heptene-CO), 48 h (1-octene-CO), 24 h (styrene-CO).

^e The samples were reprecipitated from (CF₃)₂CHOH by addition of methanol.

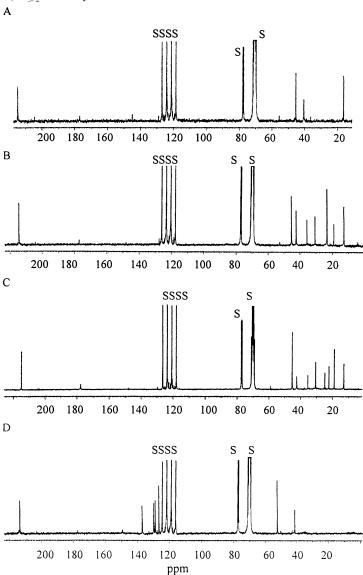
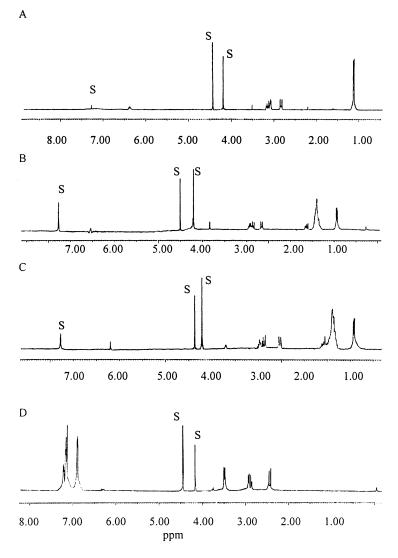
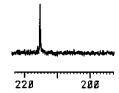



Figure 1. 13 C NMR spectra ($\{1:1 \text{ (v/v) CDCl}_3/\text{ (CF}_3)_2\text{CHOH}\}$, 400 MHz). (A) Spectrum of alternating isotactic P-CO copolymer; (B) spectrum of alternating isotactic H-CO copolymer; (C) spectrum of alternating isotactic O-CO copolymer; (D) spectrum of alternating isotactic ST-CO copolymer. (S=solvent).

^b Molecular weight and its distribution were measured by GPC relative to polystyrene standard.

^c CH₂Cl₂ was used as the solvent.

^d Tg and Tm were measured by DSC.


Figure 2. ¹H NMR spectra ({1:1 (v/v) CDCl₃/ (CF₃)₂CHOH}, 400 MHz). (A) Spectrum of alternating isotactic P-CO copolymer; (B) spectrum of alternating isotactic H-CO copolymer; (C) spectrum of alternating isotactic O-CO copolymer; (D) spectrum of alternating isotactic ST-CO copolymer. (S=solvent).

3H, CH₃) ppm were due to the diastereotopic proton of the side-chain CH₂ adjacent to the methine group, the rest of the methylene protons in the side-chain, and the CH₃ protons in the -CH((CH₂)₅CH₃)CH₂CO- repeat units of the polymer. The ¹³C NMR (CDCl₃/(CF₃)₂CHOH) spectrum of 1-octene-CO copolymer (Fig. 1C) exhibited resonances at 214.7, 44.8, and 42.0 ppm due to the C=O, CH, and CH₂ groups in the backbone, resonances at 35.3, 30.3, 25.4, 22.5, 18.8, and 12.8 ppm attributable to the five methylene groups and CH₃ group in the side-chain, respectively.

The solution of the styrene-CO copolymer in a 1:1 (v/v) CDCl₃/(CF₃)₂CHOH mixture showed ¹H NMR (Fig. 2D and structure 4) absorbances at 7.19 (m, 3H, phenyl) and 6.90 (d, J=7.3 Hz, 2H, phenyl) ppm due to the phenyl group. The resonances at 3.49 (dd, J=9.2 Hz, 3.1 Hz, 1H, backbone CH), 2.91 (dd, J=16.2 Hz, 9.2 Hz, 1H, backbone CHH), 2.42 (dd, J=16.2 Hz, 3.1

Hz, 1H, backbone CHH) ppm were due to the backbone CH and CH₂ groups, respectively. The ¹³C NMR (CDCl₃/(CF₃)₂CHOH) spectrum of the styrene-CO copolymer (Fig. 1D) exhibits absorptions at 213.2, 52.0, and 41.2 ppm due to the C=O, and backbone CH and CH₂ groups. The absorbances at 137.5, 128.9, 128.3, and 126.1 ppm were attributable to the phenyl group. The above parameters are consistent with those reported by Consiglio.⁹

In the presence of europium tris[3-(heptafluoropropylhydroxymethylene)-(+)-camphorate], the ¹³C NMR (CDCl₃/(CF₃)₂CHOH) spectrum of optically active ST-CO poly(1,4-ketone) exhibited only a dominant singlet for the carbonyl resonance (Fig. 3). However, the singlet appeared as a doublet when the racemic poly(1,4-ketone) was employed.⁷ Hence, the degree of enantioselectivity in the optically active ST-CO poly(1,4-ketone) was greater than 90%.

Figure 3. 13 C NMR spectrum ({1:1 (v/v) CDCl₃/(CF₃)₂CHOH}, 400 MHz) of optically active ST-CO poly(1,4-ketone) in the presence of europium tris[3-(heptafluoropropylhydroxymethylene)-(+)-camphorate] molar ratio of Eu(III) and ST-CO repeating units is 1:5.

Acknowledgements

The authors would like to thank the National Natural Science Foundation of the People's Republic of China for financial support (No. 29933050).

References

- 1. Sen, A. Acc. Chem. Res. 1993, 26, 303-310.
- Drent, E.; Budzelaar, P. H. M. Chem. Rev. 1996, 96, 663–681.
- 3. Rix, F. C.; Brookhart, M.; White, P. S. J. Am. Chem. Soc. 1996, 118, 4746–4764.
- Reetz, M. T.; Haderlein, G.; Angermund, K. J. Am. Chem. Soc. 2000, 122, 996–997.
- Barsacchi, M.; Batistini, A.; Consiglio, G.; Suter, U. M. Macromolecules 1992, 25, 3604–3606.
- Keim, W.; Maas, H. J. Organomet. Chem. 1996, 514, 271–276.
- 7. Jiang, Z. Z.; Sen, A. J. Am. Chem. Soc. 1995, 117,

- 4455-4467.
- Brookhart, M.; Wagner, M. I.; Balavoine, G. G. A.; Haddou, H. A. J. Am. Chem. Soc. 1994, 116, 3641–3642.
- Sperrle, M.; Aeby, A.; Consiglio, G.; Pfaltz, A. Helv. Chim. Acta 1996, 79, 1387–1392.
- Aeby, A.; Consiglio, G. Helv. Chim. Acta 1998, 81, 35–39.
- Aeby, A.; Bangerter, F.; Consiglio, G. Helv. Chim. Acta 1998, 81, 764–769.
- Nozaki, K.; Sato, N.; Takaya, H. J. Am. Chem. Soc. 1995, 117, 9911–9912.
- Yuan, J. C.; Lu, S. J. J. Polym. Sci. A: Polym. Chem. 2000, 38, 2919–2924.
- 14. The ³¹P NMR spectroscopy has given rather interesting information about the ligand DDPPI and its Pd complex. A singlet resonance of the two P atoms of free DDPPI in CDCl₃ appears at -14.2 ppm. The ³¹P NMR (C₆D₆/ CH₃NO₂) signal of the mixture of [Pd(CH₃CN)₄][BF₄]₂ and DDPPI having a molar ratio of 1:1 is undetected at room temperature. On adding more DDPPI to the mixture in the NMR tube, the small peak at about -14.5 ppm appears again. According to these phenomena, we suppose that the Pd atom in the complex is oscillating between the two P atoms of the ligand molecule, in which the four phenyl groups form a chiral environment and restrict the movement of the Pd atom. It was indicated that DDPPI is a non-chelating bidentate ligand with strong rigidity. Because of the oscillation of the Pd atom, the resonance signal of the P atoms of the ligand disappears. Lu, S. J.; Cheng, K. J.; Zhou, H. Y.; Zheng, Y.; Fu, H. X. J. Mol. Catal. (China) 1995, 9, 309-314.
- Batistini, A.; Consiglio, G.; Suter, U. W. Angew. Chem., Int. Ed. Engl. 1992, 31, 303–305.
- Bronco, S.; Consiglio, G.; Hutter, R.; Batistini, A.; Suter, U. W. Macromolecules 1994, 27, 4436–4440.